Diana’s comment on: Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers

By Diana Silva Brenes

This slideshow requires JavaScript.

Relating molecular structure to function is the first step and one of the greatest challenge to understand nature’s designs or to make novel “functional designs” of our own. This paper by the Chilkoti group begins with statistical analysis of some of the most relevant proteins displaying LCST and UCST behavior. By analyzing the peptide sequences, the authors identify as common motif for both behaviors a high glycine & proline content. Furthermore, for LCST abundance of aromatic residues seems to be a requirement whereas UCST peptides seem to be encoded by a pair of zwitterionic residues.
To test if these observations lead to LCST/UCST phenomena, over 80 model peptides were recombinantly synthesized and their thermoresponsive behavior was measured by UV absorbance while changing the temperature. Each peptide presented the predicted behavior, giving support to their observations. Furthermore, by comparing a few selected examples, they show how an increase in hydrophobicity leads to an increased UCST cloud point and how eliminating one of the residues from azwitterionic pair turns a UCST peptide to an LCST peptide.
The LCST and UCST behavior is, however, a complex phenomenon dependent on protein-protein versus protein-water interactions, which in turn are modulated by more factors aside from the sequence of the protein. The possible scenarios are limitless, and the authors give insight on the most significant: peptide length, concentration, and pH (charge state of protonable atoms).
The robustness of the behavior encoded in the rules they found can be seen by a hybrid peptide containing both an LCST portion and a UCST one. The resulting peptide displays both behaviors, albeit at different temperatures from the “parent” sequences.
Finally, the authors show that searching for the characteristics they determined as important for LCST/UCST behavior throughout the human proteome produces examples of proteins whose function could very well be related to a thermoresponsive behavior, highlighting the applicability of their observations to understand the phenomena that make life as we know it possible.


Quiroz, 2015. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers

Luxene’s comment on: Selective Tuning of Elastin-like Polypeptide Properties via Methionine Oxidation

By Luxene Belfleur

Luxene blog image 18-05

Figure 1. Kekule structure of and synthesis of ELP 2 and 3. Cartoon representation of ELPs solution, the LCST behavior and measurement of ELPs

In this article, the authors reported the LCST modulation of Elastin-like polymers (ELP) by the modification towards oxidation reactions of the methionine thioester group of the ELP 1 to form sulfoxide and sulfone ELPs derivatives 2 and 3 respectively (Figure 1). They isolated ELP 1 from plasmid DNA of E.coli bacteria and purified it by SDS-Page. In acidic media, using 30% hydrogen peroxide and 1% of acetic acid or formic acid in water, they obtained ELP derivatives 2 and 3 respectively and the molecular weight and structural elucidation of ELP 1 and its derivatives 2 and 3 had been examined and confirmed by mass spectrometry and NMR respectively.
They performed turbidity experiments to determine the cloud points of those three ELPs. As expected, both ELP derivatives 2 and 3 had a higher LCST behavior (55 °C and 43 °C for 2 and 3 respectively) compared to ELP 1 which is 25 °C (Figure 1). This is due to the increasing of water solubility of the modified ELPs (2 and 3), which required more energy to break the interaction between water and them (ELP 2 and 3) in order to evacuate the hydration shell around these ELPs and favored the collapse of the letters. Moreover, it was expected that ELP 3 would have a higher cloud point than the ELP 2 counterpart, however, this was not the case because the large dipole moment of ELP 3 favored intramolecular and intermolecular interactions between them and the protein respectively which promoted a decrease of the water solubility. They evaluated the influence of the I¯ and NO3¯ anions on the phase transition of the three ELPs and found that those anions had no significant effect on the LCST point of the ELP 1 while I¯ increased the LCST of ELP 2 and NO3¯ decreased the solubility of ELP 3 in agreement with the Hofmeister series effect.
They reported an interesting and straightforward work by turning the LCST behavior of ELPs towards synthetic modification. This work has inspired and motivated my team for designing and synthesizing sulfoxides and sulfones containing guanosine derivatives in order to both, stabilize the thioester containing guanosine derivatives compounds that we synthesize, and modulate the LCST properties of the SGQs that will be made from oxidizing 8ArG derivatives product.