Exploring the periodic table with supramolecular G-quadruplexes



Our latest article just came out on the web: Tuning supramolecular G-quadruplexes with mono- and divalent cations (Mariana Martín-Hidalgo, Marilyn García-Arriaga, Fernando González, José M. Rivera,  Supramolecular Chemistry, DOI: 10.1080/10610278.2014.924626) In it we describe a series of systematic studies of the effect of a series of cations on the structure and other properties of supramolecular G-quadruplexes. You can download a free (!) copy of the article here, but you better hurry as this is a limited time offer available only to the first 50 people to take advantage of it. If, however, you are not one of the “50 lucky winners”, don’t despair, you can still get a copy article by simply leaving a request in the comments. In the meantime, here’s the abstract:

Supramolecular G-quadruplexes (SGQs) are formed via the cation promoted self-assembly of guanine derivatives into stacks of planar hydrogen-bonded tetramers. Here, we present results on the formation of SGQs made from the 8-(m-acetylphenyl)-2′-deoxyguanosine (mAGi) derivative in the presence of various mono- and divalent cations. NMR and HR ESI-MS data indicate that varying the cation can efficiently tune the molecularity, the fidelity and stability (thermal and kinetic) of the resulting SGQs. The results show that, parallel to the previously reported potassium-templated hexadecamer (mAGi16·3K+), Na+, Rb+and NH4+ also promote the formation of similar supramolecules with high fidelity and molecularity. In contrast, the divalent cations Pb2+, Sr2+ and Ba2+ template the formation of octamers (mAGi8), with the latter two inducing higher thermal stabilities. Molecular dynamics simulations for the hexadecamers containing monovalent cations enabled critical insights that help explain the experimental observations.



One thought on “Exploring the periodic table with supramolecular G-quadruplexes

  1. Pingback: Exploring the periodic table with supramolecular G-quadruplexes | G-Quadruplex World

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s